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under X is equivalent to w. If = oceurs at least once we say = is a discrete comp-
onent of \. Moreover we say that = occurs only a finite number of times if there
exists an integer m > 1 such that it is impossible to choose $; (1 < 7 < m) with the
above properties.
The following result is an immediate consequence of Lemma 1 and Theorem 1.
TuEOREM 2. Let T be a discrete subgroup of G of type 111 and T’ a subgroup of
finite index in T. PutTo = n Ty~ !and supposethat N n T/N n T, 1s finile.

yel'
Then every discrete irreducible component of the representation N of G on Ls(G/T’)
occurs only a finite number of times in \.

* This work was supported in part by a grant from the National Science Foundation.
1 See Séminaire H. Cartan, 1957/58, Ezposé 8, pp. 8-10.

2 Ann. of Math., 50, 525 (1949)\

3 This condition was suggested by Godement.
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1. Introduction.—It has been an intuitive assumption for some time that if a
control system is being operated from a limited source of power then the system can
be moved from one state to another in the shortest time by at all times utilizing
properly all available power. This hypothesis is called the “bang-bang prineciple.”
Bushaw accepted this hypothesis and in 1952 showed for some simple systems with
onie degree of freedom that of all bang-bang systems (that is, systems which at all
times utilize maximum power) there is one that is optimal.! In 1953 I made the
observation that the best of all bang-bang systems, if it exists, is then the best of
all systems operating from the same power source.?2 More recently fairly general
results have been obtained by Bellman, Glicksberg, and Gross® and later (but
seemingly independently) by Krasovskii* and Gamkrelidze.® At the 1958 Inter-
national Congress of Mathematicians in Edinburgh, L. S. Pontryagin announced a
“maximum principle” which is the beginning of an even more general theory.

We confine ourselves here to the time optimal problem for control systems which
are linear in the sense that the elements being controlled are linear and as a function
of time the control enters linearly. The differential equation for such systems is

x(t) = A@®)x(t) + B(t)u®) + f(v), (1)
where x and f are n-dimensional vector functions (x(t) is the state of the system at

time t), A isan (n X n) matrix funetion, and B isan (n X r) matrix function. Thus
(1) represents the system of differential equations '

x,(t) = ga,,(t)x,(t) +/§:1 b, (t)u,(t) + f,(t),i =1, ..., n.
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Our ability to control the system lies in the freedom we have to choose the ‘“steer-
ing” function u. We assume that the admissible steering functions are piecewise
continuous (or measurable) and have components less than 1 in absolute value
(\ut(t)l < 1). Given an initial state xo and a moving particle z(t), the problem
of time optimal control is to hit the particle in minimum time. Let x(t, u) be the
solution of (1) satisfying x(0) = x%,. An admissible steering function u* is optimal
if for some t* > 0, x(t*, u*) = z(t*) and if x(t, u) # z(t) for 0 < t < t* and all
admissible u.
Bellman, Glicksberg, and Gross? considered the system

x(t) = Ax(t) + Bu(t) (2

and restricted themselves to the problem of starting at xo and reaching the origin
in minimum time. The (n X n) matrix A is constant and its characteristic roots
were assumed to have negative real parts. B was assumed to be a constant non-
singular (n X n) matrix. For some of the simplest examples of control systems
the matrix B is singular, and this restriction on B is much too severe. They prove
the existence of an optimal steering function, and the form for an optimal steering
function is given in the proof. However, the form given for an optimal steering
function does not, in general, imply that there is a bang-bang optimal steering
function. Gamkrelidze® considered the same problem, removed the restriction that
B be nonsingular, and showed for systems which are later in this paper called ‘“nor-
mal’” the existence and uniqueness of an optimal steering function. The form of
the optimal steering is the same as that given by Bellman, Glicksberg, and Gross,
and in this case one can conclude that the optimal steering is bang-bang. Krasov-
skii* studied the more general control system (1) and the more general control
problem of hitting a moving particle. Using results of Krein on the L-problem in
abstract spaces, he proved the existence of an optimal steering function for sys-
tems which we call “proper’” control systems. If Krein’s results are to be used
without modification, the restriction to proper control systems seems to be neces-
sary. Krasovskii states also that the optimal steering function is unique and simple
examples show this to be false. Thus to date the most general bang-bang principle
has been proved by Gamkrelidze.

For the more general control system (1) we show essentially that anything that
can be done by an admissible steering function can also be accomplished by using
bang-bang steering. This extends our result? and at the same time establishes the
bang-bang principle for all control systems where the controlled elements are linear.
This does not mean that all optimal steering functions are bang-bang. For some
systems the objective can be reached in minimal time using a steering function
which, during part of the time, has some zero components. We state a number of
results for proper and for normal control systems which show the significance of
these classifications. As in the special problem considered by Gamkrelidze, the
more general normal systems have unique optimal steering functions, and in this
case we have a true bang-bang principle: the only way to reach the objective in
minimum time is to use the maximum available power all of the time. In Theorem
5 we give a result which should be of importance in the synthesis problem, which is
the problem of determining the optimal steering u* as a function of the state of the
system. This result shows that for some systems optimal steering can be determined
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by what amounts to running the system backwards. This idea gives, for instance,
a much simplified solution of the example solved in the paper of reference 3.

2. The General Problem.—The problem described in the introduction for the
system (1) of hitting a moving particle in minimum time will be called the general
problem. For the control system (1) the state x(t, u) of the system at time t is
given by

x(t, u) = X(t)xo + X(t)J; Y(r)u(r)dr + X(t)j; X-Ynf(r)dr.  (3)

X (t) is the principal matrix solution of X(t) = A(t)X(t), and Y(r) = X~!(r)B(r).
We want at some time t to have x(t) = z(t); i.e., to have

t
w(t) = L Y (ryu(r)dr, 4)

t
where w(t) = X-1(t)z(t) — %0 — fX—l(T)f(T)dT. We assume throughout that
0

A(t), B(t), and f(t) are continuous for 0 < t < . The following Lemma states
that anything that can be done by an admissible steering function can also be done
by a bang-bang function. The set of admissible steering functions is the set Q
and the set of bang-bang steering functions is the set 2°. The set K(t) is related to
the set of all states that can be reached in time t by an admissible steering function.
KO(t) is similarly related to the set of states that can be reached in time t by bang-
bang steering functions.®

LEmMMA 1. Let Q be the set of all r-dimensional vector functions measurable on
[0, ¢] with |u,(r)] < 1. Let Q be the subset of functions in @ with |u,(r)| = 1. Let
Y (7) be any (n X r) matriz function in L*([0,t]). Define

K(t) = {j:Y(‘r)u(r)d‘r; ue Q}
and |

Ko(t) = { fo Y(r)u(r)dr; u°eﬂ°}.

Then K°(t) is closed, and K°(t) = K(?).

As a direct consequence of the Lemma we obtain an extension of the result in
the papel of reference and a general bang-bang principle.

THEOREM 1. If of all bang-bang steering functions there is an optimal one (rela-
tive to Q°), then 1t is optimal (relative to 2).

THEOREM 2. If there is an optimal steering function (in Q) then there is always
a bana-bang steering function (in Q°) that is optimal.

From Lemma 1 it is also not difficult to show that

TuEOREM 3. If for the general problem there is a steering function u in Q such that
z(t, u) = 2(t) for some t > 0, then there is an optimal steering function in Q. More-
over, all optimal steering functions u* are of the form

u*(t) = sgnnY(t)] 6

where n is some n-dimensional vector. (For r-dimensional vectors a and b, a = sgn b
means thata, = sgnb, i =1, ...,r.)



576 MATHEMATICS: J. P. LASALLE Proc. N. A. S.

Let y’(t) be the jth column vector of Y(t). The control system (1) is said to
be normal if on each interval of positive length and for each j = 1, .. ., r the func-
tions y,(t), ..., y,/(t) are linearly independent. This is equivalent to saying that
no component of nY(t), n # 0, is identically zero on an interval of positive length,
and therefore u*(t) is uniquely determined by (5). Hence

THEOREM 4. For normal control systems the general problem has at most one optimal
steering function.

Thus the only way of reaching the objective in minimum time using a normal
system is by at all times utilizing properly all of the power available.

8. The Special Problem.—The control problem for the system

X(t) = A(t)x(t) + B(t)u(t), (6)

where the objective is to start at the initial state x and to reach the origin (the
equilibrium state) in minimum time will be called the special problem. Hence for
the special problem we want (see equation (4))

t
—x = fo Y()u(r)dr. | )

It is then not difficult to show that

Theorem 5. If for some t > 0 and some n-vector y there is a solution u = u* of (7)
of the form

u*(r) = sgn[pY(r)], 3)

then it is an optimal steering function for the special problem.

It is this result that is of interest in solving the synthesis problem. .If the con-
trol system is autonomous (equation (2)), then we can start the control system at the
origin, use a steering function of the form (4) and look at the solution as t decreases
(replace t by —t). This steering function is then optimal for all the states that can
be reached in this manner. Reversing the system in this way gives the set of all
initial states in the special problem for which this steering function is optimal.
For normal systems the optimal steering is unique, and this procedure always deter-
mines the optimal steering as a function of the state of the system. We say “al-
ways” in the above sentence because we know that the synthesis problem can be
solved in this way for some systems that are not normal. This procedure leads to
the determination of switching-surfaces, which are surfaces where certain of the
components of the steering change sign.

It is now that we can see the usefulness of introducing another classification of
control systems. If Y (t) = 0 on any interval of positive length implies 3 = 0,
then the control system (1) is said to be proper. This is equivalent to saying that
the row vectors yi(t), ..., ya(t) of Y(t) are linearly independent vector functions
on each interval of positive length. It is clear that every normal control system s
proper but the converse is not true. It is also not difficult to see, when we remove all
constraints on the admissible control functions, that proper control systems are
completely controllable,” i.e., given any two states x; and x; and any two times t;
and tg, t; ¥ to, there is a steering function such that starting at x; at time t, the
system is brought to the state x, at time t».
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Proper systems also have the additional controllability property (now we return
to the constraint ju,(t)| < 1):

THEOREM 6. If the system (2) is proper and asymptotically stable (X () — 0 as
t — ), then for each initial stale x, there is a steering function in Q that brings the
system to the origin in minimum time.

It is easy to see for proper systems that optimal steering functions lie on the
boundary of @. Expressed as a bang-bang principle this states that: In proper
conirol systems optimal steering u* has the property that at any given time some com-
ponent of u* is utilizing the maximum power available to it.

It is of considerable importance to observe that for proper control systems there
is a way (if the optimal system for the special problem can be synthesized) of decid-
ing whether or not it is possible to start at a point x, and then hit the moving particle
z(t) and also possible to determine optimal steering. We can state this result as-
follows:

For proper control systems the problem (0, w) = xo, z(t, u) = z(t) for some t > 0 and
some u 1n Q, has a solution if and only if it is possible to start at some point —w(t,)
and then with steering in @ to reach the origin in time t» < t. If —w(ty) s the first
point on the curve —w(t), ¢ > 0, from which it is possible to reach in this manner the
origin in time t;, then any steering that does this is optimal for this special problem and
18 also optimal for the general problem of hitting 2(t).

* This research was supported in part by the Air Force Office of Scientific Research under Air
Force Contract AF 49 (638)-382.
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